
ANNALS OF PHYSICS 159,220-251 (1985) 

The Schwinger Model and Its Axial Anomaly 

N. S. MANTON 

Institute for Theoretical Physics, University of Caitfornia, 
Santa Barbara, California 93106 

Received May 16, 1984 

The Schwinger model (quantum electrodynamics with massless fermions in one spatial 
dimension) is solved, supposing that space is a circle. This clarifies aspects of the usual 
version of the model, where space is a line, without changing the physics. The Hamiltonian 
formalism is used. On a circle, an abelian gauge field has one physical degree of freedom, and 
the gauge covariant Dirac operator, which couples the fermions to this degree of freedom, 
exhibits spectral flow. The relationship between the spectral flow and the axial anomaly is 
explained. Some variants of the Schwinger model are also discussed. 0 1985 Academic Press, Inc. 

1. INTRODUCTION 

The Schwinger model [ ll-quantum electrodynamics in one spatial dimension 
with massless fermions-is a fascinating field theory. In its standard fermionic form 
it is not trivial, nor obviously soluble. However, by a study of Green’s functions 
[ 1, 21, and later by explicit bosonization [3], it was completely solved. The model is 
in fact equivalent to the free field theory of a massive scalar field in one spatial 
dimension. The physical scalar particles have mass m = elfi, where e is the electric 
coupling constant. 

Because the fermions are massless, one might expect both the electric charge and 
the axial charge to be conserved quantities. However, there is an axial anomaly [4], 
and the divergence of the axial current is 

where E, is the electric field in the spatial (=x) direction. The fact that the scalar 
particles are massive, even though the fundamental fermion and abelian gauge fields 
are massless, is closely related to this anomaly equation. 

The purpose of this paper is to re-examine the Schwinger model in the canonical 
Hamiltonian formalism. We shall suppose that space is a circle of length 27~ It is a 
simple modification to let the length be 27rL, and in the limit L + 00 one recovers the 
usual version of the model. As we shall see, working on a circle greatly clarifies the 
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properties of the model that interest us, but it does not change the physics in any 
significant way. 

What is particularly clear on a circle is that there is precisely one physical degree 
of freedom in the gauge potential, namely, the phase of the Wilson loop variable 

I 
2n 

exp i A Jx) dx. 
0 

(l-2) 

It is possible to choose a gauge where A, is independent of x (Coulomb gauge) and 
0 <A, < 1. The values A, = 0 and A, = 1 are gauge equivalent and should be iden- 
tified. The true configuration space of pure electrodynamics is therefore itself a circle. 
On the infinite line, this is also true but harder to see. If the circle has length 27rL, the 
analog of the gauge above becomes 0 <A, <L-l, and this doesn’t have a good limit 
as L + co. A related observation is that on the circle, finite energy transverse electric 
fields are physically important. This remains true as L + co, but in the limit, such 
electric fields become infinitesimal. 

A more technical advantage of working on a circle is that momenta are discrete. 
This is helpful because various operators, which depend on the momentum variable p, 
have different behavior depending on whether p = 0 or p # 0. 

The essentially novel part of this paper is Section 3. Here it is shown how the zero 
momentum scalar particles arise from the coupled fermion and gauge fields. It is also 
shown why the axial charge is not conserved. The underlying idea is that of spectral 
flow [5]. The one-dimensional covariant Dirac operator which occurs in the 
Hamiltonian is 

( 

-2, + A, 0 
0 ) 2,--A, * (1.3) 

In the Coulomb gauge, the energy spectrum is p + A, for left-handed fermions (upper 
component) and -p -A, for right-handed fermions (lower component). The 
momentum p takes all integer values. As one orbits the configuration space once (i.e., 
as A, increases from 0 to 1) the spectrum is permuted. The energies of left-handed 
fermions increase by one, those of right-handed fermions decrease by one. The 
spectral flow is two. While it has been recognized before that the spectral flow is 
related to the anomaly [6], we go further and find directly how the spectral flow 
influences the dynamics of the gauge field. 

One consequence of the spectral flow is that the regularized axial charge depends 
on the background gauge potential. Naively, the axial charge is an integer-the 
difference between the numbers of left- and right-handed particles-but it is also 
ambiguous because the filled Fermi-Dirac sea has an infinite number of particles of 
each handedness. After regularization, the charge is no longer ambiguous, but neither 
is it an integer. This leads to the anomaly. In our analysis, therefore, it is “fractional 
charge” that causes the anomaly. 

In other field theories, especially those with solitons coupled to Fermi fields, it has 
been shown that the solitons can acquire a fractional charge [7]. There, the analysis 
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indicated that an anomaly was responsible for the fractional charge. Clearly these 
ideas are very closely related. 

The analysis of the Schwinger model presented here developed from our study of a 
simple quantum mechanical system- a particle moving on a torus in a background 
magnetic field. There, too, there is a spectral permutation and a type of anomaly. In 
fact, the restricted Schwinger model which we discuss at the end of Section 3, in 
which fermionic excitations are assumed to be absent, is mathematically equivalent to 
the particle on the torus, but the physics is quite different. We find it interesting that 
this system has an anomaly, but none of the complications, and infinities, of a 
quantum field theory. 

The material of this paper is organized as follows. Section 2 introduces elec- 
trodynamics on a circle. Section 3 is the heart of the paper; this is where we discuss 
the physical consequences of the spectral flow in the Schwinger model. In Section 4, 
we complete the analysis of the model using the technique of bosonization. Sections 5 
and 6 discuss some modifications of the Schwinger model. Finally, in Section 7, we 
outline the relevance of some of the ideas discussed here to quantum 
chromodynamics in three spatial dimensions. 

The proof of a lemma fundamental to bosonization is in Appendix A. In 
Appendix B we discuss quantum mechanical particle motion on a torus in a 
background magnetic field [B]. In Appendix C we explain the connection between 
fractionally charged solitons and the anomaly of axial electrodynamics. 

2. ELECTRODYNAMICS ON A CIRCLE 

Let us consider pure electrodynamics in one spatial dimension, where space is a 
circle of length 2~. This is a system with one degree of freedom, since at a given time, 
the set of gauge inequivalent field configurations is itself a circle. The only gauge 
invariant quantity that can be constructed from the spatial component of the gauge 
potential, A#), is the phase of the Wilson loop variable 

I 
2n 

exp i A,.(x) dx. 
0 

(2-l) 

(The coupling constant e is absorbed in the gauge potential.) 
We can make the configuration space explicit by choosing a gauge. A gauge 

transformation has the form 

Ak=A, + i(a,g)g-‘, (2.2) 

where g(x) = exp zil(x). g must be single-valued, so li is single-valued mod 21~. If 
li (2~) = li(0) then the gauge transformation is topologically trivial, and if A(2n) = 
A(O) + 27~2, with n # 0, then it is nontrivial and has winding number n. By a 
topologically trivial transformation one can make A, independent of x, and by a 
further nontrivial transformation of the form g = exp inx, one can bring A, to the 
interval [0, 11. Since A, = 0 and A, = 1 are gauge equivalent configurations, we shall 
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identify them. (This identifies what could be regarded as topologically distinct 
vacua.) The configuration space is therefore a circle. From now on we shall always 
work in this gauge, so A, depends only on time. 

The kinetic energy of a time-dependent field is 

1 
-I 

2n 

2e2 o 
E; dx, 

where E, is the electric field 

The time component of the gauge potential is an auxiliary quantity, which is deter- 
mined by imposing Gauss’ law 

axE, = axA, - a,a,A, = 0. (2.5) 

In our gauge, this implies 8,A I is independent of x, and since A I is single-valued, 3,A f 
must vanish. So E, =A,. In one spatial dimension there is no magnetic field, so no 
field potential energy, and the total field energy is therefore d:/e’. The classical 
equation of motion, k’, = 0, allows an arbitrary electric field, constant in both space 
and time. 

The quantization of this system is elementary. The conjugate operators E, and 
A, obey the commutation relations 

[E,,A,] =-g I, 

and the Hamiltonian operator is 

(2.7) 

The most general operator representing the electric field E,, which satisfies (2.6), is 

E,=-%(&+i@). 

0 is an arbitrary real parameter, and physically e20/2x acts as a classical constant 
electric field. However, we shall suppose 0 = 0, and postpone till Section 6 a 
discussion of the significance of nonzero values of 0 in pure electrodynamics and in 
the Schwinger model. 

Since 27~4, is an angular variable, the wavefunction yl(A,) must be periodic with 
period 1. A stationary state has the form 

y@,) = exp ZninA,, n E z. P-9) 

595/159/l-15 
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It is an eigenstate both of the electric field operator, with the now quantized eigen- 
value e*n, and of the Hamiltonian, with energy eigenvalue rre2n2. If the circle were 
opened up, such an electric field would be that produced classically by charges fn at 
the ends. 

3. THE SCHWINGER MODEL ON A CIRCLE 

The Lagrangian density of the model is 

L = & @,A. - axA,)’ + lpjqa, + iA&. (3.1) 

w is a 2-component massless Dirac spinor, and 4 = w$“. We work with the Dirac 
matrices y” = o’, y’ = -iu2, and y5 = y”yl = u3. ui, u2, and u3 are the Pauli matrices. 

We choose the same gauge as before, 

axA, = 0, O<A,< 1. (3.2) 

Gauss’ law is now 

-8,ZJ,A, = e2ty+y, (3.3) 

where vtyl represents the electric charge density. This equation leads to an important 
constraint. For consistency, the total electric charge must be zero. Physically this is 
reasonable, as the sources and sinks of electric flux on a circle must balance; on a 
line, flux could escape to infinity. 

Standard manipulations [9] lead to the quantum Hamiltonian 

(3.4) 

with the canonical anti-commutation relations 

The operator 

(3.6) 

represents the transverse electric field, which is classically A,, and is independent of 
x. The first term in H is the energy in this part of the field. The second term is the 
kinetic energy in the Fermi field, and the third is the Coulomb energy which is 
induced when Gauss’ law is used to eliminate A,. The x-space Green’s function for 
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-8: on the circle is slightly awkward to write down, but is not needed. We shall 
change to the momentum representation where -8: = p* as usual. 

Important operators are the vector current jP = ijiy”w, which is the electric current, 
and the axial current j: = @“y’w. They have components 

j” = ii = ~fv, + u12tw2, (3.7) 

j’ = 3 = v?vl - vffv2. (3.8) 

Naively, both the electric charge 

Q = j;= (wfwl + w2twJ dx (3.9) 

and the axial charge 

Qs = j;= tdwi - &A dx (3.10) 

commute with the Hamiltonian, but the axial charge is not conserved, as we shall see. 
The momentum space Fermi operators are defined by Fourier expansion 

keZ; 

Let us define momentum space chiral charge density operators 

= r L k+paa k9 *a. . 

sojo =P~P> +P~(P) andj’(p) =P~P) -PAP>. 
The Hamiltonian, in the momentum representation, takes the form 

ff-eZ 411 ~+Cu~,p~,,p(P+~,)t\7a,t,pa,,p~-P-~~) 
x P P 

+$ C j”tp~~~o~-P). 
P#O 

(3.11) 

(3.12) 

(3.13) 

The fact that A, is independent of x has been used here. Also, since the total electric 
charge is zero, the longitudinal part of the electric field Ez”” = -aXA, has no p = 0 
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component, and the potentially singular p = 0 component of the Coulomb energy is 
absent. This is important later. 

For fixed A,, a?,, and a,,p are creation and destruction operators for a positive 
chirality particle of momentum p and energy p + A,. Similarly a;,, and az,p are 
creation and destruction operators for a negative chirality particle of momentum p 
and energy -p -A,. We shall refer to these types of particles as left- and right- 
handed, respectively. 

Normally in field theory one would distinguish the positive and negative energy 
particles and reinterpret the particle destruction operator aa,p as an antiparticle 
creation operator if the particle’s energy would be negative. Here we shall not do this, 
because as A, changes, an energy level can change sign. In the standard language one 
would then have to admit the possibility of a particle appearing from nowhere, or an 
antiparticle disappearing, as A, varied. 

For a fixed value of A,, a basis for the physical states consists of those states, 
subject to Fermi statistics, in which each energy level is specified as either filled (a 
particle) or empty (no particle), and in which almost all (i.e., all but a finite number) 
of the negative energy levels are filled and almost all of the positive energy levels are 
empty. A physical state is a linear combination of such basis states, with complex 
amplitudes. When A, is allowed to vary, the amplitudes are functions of A,. Of 
course, in a given basis state it is the particle momenta that remain constant as A, 
changes, rather than the particle energies. 

It is useful to define the Fermi surfaces for the left- and right-handed particles, 
which we denote by EE and Ei. This is done at fixed A,. Associated with any basis 
state there is an unexcited basis state, with the same numbers of left- and right- 
handed particles, in which no empty level has a lower energy than a filled one. The 
Fermi surfaces are defined to lie halfway between the highest filled and lowest empty 
levels of this unexcited state (see Fig. 1 for an example). Any basis state can be 
described in terms of excitations relative to its Fermi surfaces. 

Let us now consider the spectral flow of the one-particle energy levels, and its 
consequences. The spectrum at A, = 0 and A, = 1 is the same, namely, the integers, 
as it must be since these values of A, are gauge equivalent and are identified. 

t 
: . 

EF-&- 
- 

: 

T- 
(0) 

t ENERGY 

: T  
. 

: 
--•-- l EMPTY LEVEL 

- 
- -FILLED LEVEL 
- 

- --- FERMI SURFACE - 
- 

- 
T 

(b) 

FIG. 1. An excited basis state (a) and its corresponding unexcited state (b). EL is the Fermi surface. 
(Only the energy levels of left-handed particles are shown.) 
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FIG. 2. The one-particle fermionic spectrum as a function of the background gauge potential A,. 
The spectral flow at the arbitrarily chosen energy E is two. 

However, as A, increases from 0 to 1, the energies of the left-handed particles each 
increase by one while the energies of the right-handed particles decrease by one (see 
Fig. 2). The numbers of energy levels which pass through any given energy value, 
weighted by the direction of flow, are +l and -1, respectively, for the left- and right- 
handed particles. The spectral flow [5] associated with the circle of one-dimensional 
Dirac operators parametrized by A, is defined to be the difference of these numbers. 
It equals two. 

The spectral flow induces a nontrivial periodicity on the amplitudes. To illustrate 
this, let us consider unexcited states. Let v/ M,,@X) denote the amplitude of the basis 
state in which left-handed particles of all momenta Qkf and right-handed particles of 
all momenta >N are present. The boundary conditions that should be imposed are 

VIIM,N(l) = v&4+ 1,‘v+ 1m (3.15a) 

(3.15b) 

The topologically nontrivial gauge transformation g(x) = exp ix decreases A, from 1 
to 0, but at the same time it changes the eigenstate of the Dirac operator exp ipx to 
exp i(p + 1)x, thereby increasing the momenta of all particles by one. Equation 
(3.15a) therefore identifies the amplitudes for gauge equivalent states. More 
physically, the Fermi surface E[ (Ei) of a basis state increases (decreases) by one as 
A, increases continuously from 0 to 1, because of the spectral flow, and Eq. (3.15a) 
identifies the amplitudes of basis states with the same Fermi surfaces. vM,N near 
A, = 1 should actually join smoothly on to ~~+r,,,,+, near A, = 0, because there is 
nothing special about these values of A, if 27~4, is regarded as an angle. Equation 
(3.15b) matches first derivatives, and the Schrodinger equation will ensure that all 
higher derivatives match too. 

The boundary conditions to be imposed on the amplitudes of arbitrary basis states 
are the obvious generalizations of (3.15). One must equate the amplitudes of gauge 
equivalent basis states at A, = 0 and A, = 1, bearing in mind that particle energies 
are globally gauge invariant, not particle momenta. 
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Let us now define the regularized chiral charges QL and QR of a basis state. 
Formally these charges are the eigenvalues of the charge operators 

QL = c af,pal,p, QR = s ai.pa2,py (3.16) 
P P 

which count the number of particles of each handedness. These numbers are infinite, 
of course, and the charges must be regularized. We shall use the method of heat- 
kernel regularization. We can simplify our discussion by again considering only unex- 
cited states. Consider then a basis state v~,~. Formally, 

QL= K- 1, 
my.. 

QR= x 1. (3.17) 
n>N 

The regularized charges are 

(3.18) 

where I > 0. The exponential weights are gauge invariant, since they just depend on 
the particle energies. The regularized charges suppress the contribution of particles 
with large negative energies, but when A = 0 they agree with the formal expressions 
(3.17). 

Evaluating the sums (3.18) for small A gives 

M+A,++)‘-++o(n’), (3.19a) 

Q;=++(- - ) 2 ( N A,++ +‘I. -N-A,++ 
2 

(3.19b) 

Charge differences are well defined as 1 --) 0, and we define the absolute regularized 
charges by subtracting the divergent constant R-i. Thus 

Qpg=M+Ax+f=E;, Q+-N-A.+f=E:,. (3.20) 

For more general basis states, with excitations, the sums (3.18) are over all momenta 
M, n for which particles are present. It remains true that Qpg = Er and Qgg = EL. 
Exciting a particle changes the energy but not the charges. 

The reader may be surprised that these charges depend on the background field A,, 
and are generally nonintegral. That this must be so is a consequence of the spectral 
flow. QL’” (QFg) must increase (decrease) by one as A, increases from 0 to 1, if 
gauge equivalent basis states are to have the same charges [cf. the boundary 
conditions (3.15)]. 

Recall that the electric charge Qpg + QEg of any physical state must be zero. This 
requires that 

E; = -E;. (3.2 1) 
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For unexcited states N = A4 + 1. Note that A, cancels in these equations, so that 
there is a constraint on the basis states that can occur in a physical state, but no 
constraint on A,. If A, had been constrained, the theory would have been inconsistent 
(cf. Section 5). 

The axial charge is 
QyB = Qpg _ QFg 

=2EF,. 
(3.22) 

For unexcited states 
Qyg=2M+2,4,+1. (3.23) 

As A, increases from 0 to 1, the axial charge changes by 2, as one left-handed 
particle is created and one right-handed particle is destroyed. 

The f that occurs in the definitions (3.20) of Qyg and Qrg may appear arbitrary, 
but is justified on symmetry grounds. One consequence is that an unexcited state with 
zero electric charge has zero momentum, because the momenta of the left- and right- 
handed particles together take all integer values precisely once. Furthermore, the 
momentum of an excited state, which is generally nonzero, is determined by the 
nature of the excitation, and is independent both of the value of A, and of the 
location of the Fermi surfaces. 

By considering its momentum, one can also see that a state with nonzero electric 
charge is unphysical. In an unexcited state of charge one, for example, the particle 
momenta take all integer values once, and one value occurs twice. The net 
momentum is this particular value, say, P. But it is not gauge invariant, since it can 
be changed to P + 1 by a topologically nontrivial gauge transformation. There is 
therefore a momentum anomaly, which is unacceptable. 

Now, and for the remainder of this section, we shall make what may seem a drastic 
approximation. We shall suppose there are no fermionic excitations. We shall also 
ignore the Coulomb term in the Hamiltonian. It turns out that some of the states of 
the Schwinger model can be understood this way, namely, those involving physical 
scalar particles of zero momentum. The axial charge anomaly can also be 
understood. In Section 4, we shall allow for fermionic excitations, and show how the 
results obtained here fit into the complete theory. 

If there are no excitations, and the electric charge is zero, the complete quantum 
state is specified by a set of wavefunctions { w,,(A,): P E Z, 0 <A, < 1) subject to the 
boundary conditions 

VP(l) = VP+ *c-4, (3.24a) 

QYP(l> = c4yP+,w. (3.24b) 

We have here introduced a new notation wp for what was previously v~,~+, . The 
evolution of wP is determined by the Schrodinger equation 

e2 a2 
-4naAZ+VTdg(4 wp, 

x ) 
(3.25) 

where Vtpeg is the regularized kinetic energy of the fermions. 
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Formally, the kinetic energy of the fermions is 

VP@,)= 1 b+A,)t r (-P-A,). 
P<P P>Pil 

This is regularized in the same way that the charges QL and Qa were. We define 

Vj(A,) = s (p +A,) f+p+AJ f s (-p -A,) &-P-Ax)* (3.27) 
P<P P>Pt 1 

The sums can be evaluated by differentiating (3.19) with respect to 1, giving 

v:(A,)=-St P+A& ( 1 
2 

- & t O(A). (3.28) 

Subtracting the divergent constant, and taking the limit A -+ 0, one obtains the 
regularized energy 

VgyAJ = (P t A, + 4)‘. (3.29) 

Note that Vtg(AX) near A, = 1 smoothly joins on to Vtf ,(AJ near A, = 0, which is 
what we expect from gauge invariance. 

The expression (3.29) differs from the normal ordered energy, which is the total 
energy of the positive energy particles and positive energy antiparticles. Since there 
are finitely many such particles and antiparticles, and since each energy level varies 
linearly with A,, the normal ordered energy is a linear approximation to the 
quadratic function (3.29). In this approximation, V,(l) = VP+ r(O), but VP@,) and 
VP+,@,) have different slopes. The smooth joining of the functions (3.29) is 
preferable because it respects the angular character of A,. Physically, by adopting 
(3.29), we admit that changes of the energy levels in a filled Fermi-Dirac sea are 
important. 

To solve the Schrodinger equations (3.25) it is convenient to work in an extended 
scheme. Let us define a potential V(A”,) and wavefunction yl(2.J over the entire 
interval -oo <LX < co, such that 

VFE(A,) = V(A, + P), (3.30) 

vPv,)= v4‘4,+v. (3.3 1) 

Then 
V(XJ = (TX + 4)‘. (3.32) 

The Equations (3.25) reduce to the Schrodinger equation for a harmonic oscillator 

. aY 
lar= ( -$-g+(LLt+)') w, (3.33) 

and the boundary conditions (3.24) are satisfied if yl@J is everywhere smooth. 
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Technically, it is not surprising that the minimum of V@J occurs at xX = - f, 
corresponding to P = -1, A, = 4. This is where the Fermi surfaces EL and Ei are 
equal to zero. Here, too, the set of energy levels is {n + {: IZ E Z} for both left- and 
right-handed fermions; all negative energy levels are tilled and all positive energy 
levels are empty. Both charges Qyg and QEg vanish as well, and this again justifies 
the f in their definition. 

Physically, it is surprising that the unexcited Fermi-Dirac sea has its lowest energy 
when A, = $ and the phase factor (2.1) equals -1. However, when A, = 0 there are 
two zero energy levels, one of each handedness, and a charge zero state of minimum 
energy is one where all negative energy levels, and just one zero energy level, are 
tilled. This two-fold degeneracy suggests that a lower energy can be obtained by 
changing A,, as is the case. 

Stationary state wave functions of the harmonic oscillator (3.33) are well known. 
They are spread over the entire range of LX, so the amplitude yp(Ax) is not iden- 
tically zero for any value of P, although it is small if IPJ is large. The frequency of 
the oscillator is e/J?;, so the spacing of the energy eigenvalues is e/fi too. 

Let us now recall the Hamiltonian R of a free, bosonic scalar field of mass m, on 
a circle of length 271. In the momentum representation 

z= +Z (n+(P) n(P) + W + m*) Q+(P) Q(P)), (3.34) 
P 

with 

[@P(P), @WI = P(P), W’)l = 0, 

[W-P), @WI = -i~pply 

ff(P) = JG4 @J(P) = @ +<-P>l 

(3.35) 

so that 3 describes an infinity of uncoupled harmonic oscillators. We shall establish 
in Section 4 that the Hamiltonian of the Schwinger model on a circle is equivalent to 
(3.34), with m = elfi. 

What we have shown so far, assuming that it is not misleading to ignore the 
Coulomb interaction, is that the states of the Schwinger model with no fermionic 
excitations correspond to multi-particle states of the free scalar field, where all 
particles have zero momentum. This is because the zero momentum field oscillator in 
A?+ has frequency elfi. It turns out, for reasons that will be clear later, that the 
correct way to identify the zero momentum scalar field operators with the operators 
of the Schwinger model is 

Lf(O)=\/Z (Xx+$ @(O)=+-& 

x 

(3.36) 



232 N. S. MANTON 

One might have guessed the conjugate pairing 

n(O)=-‘e& \/215 
d- 2lr dA, 

Q(O) = - 
e ( 1 &++, (3.37) 

but this is wrong.’ 
Finally, let us look at the axial charge anomaly. The expectation value of Qyg is 

(3.38) 

In general, this is not constant. With the time dependence of the wavefunctions deter- 
mined by the Schrodinger equation (3.25), one deduces, after integrating by parts, 
that 

-&QFg)=T jol w;)*(A,) (-$-&) v~k’x)ax 

x 

= 2(E:‘), (3.39) 

where E:’ is the transverse electric field operator. Surface terms at A, = 0 and A, = 1 
cancel, because of the boundary conditions (3.24). Equation (3.39) is the integrated 
form of the anomaly equation (1.1). 

In the extended scheme 

<QY'> = jm (2A:, + 1) v*@J ~4%) d-k 

= (3 + l), (3.40) 

and (3.39) is an immediate consequence of the Heisenberg operator equation 

= 2E:‘. (3.41) 

(Note that d/dA, and d/dx are the same operators, even though A, and JX only 
agree mod 1.) 

It is often claimed that 

; (Ax) = (E:‘), 

implying that the charge Q; = Qyg - 2A, is conserved, albeit not globally gauge 
invariant. In fact, 

’ I am grateful to Sidney Coleman for alerting me to this. 
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so Q; is the normal ordered version of the axial charge, which has integer eigen- 
values. Were it not for the boundary conditions (3.24), Ql would be conserved, 
because the Schrodinger equation (3.25) does not explicitly mix the wave function wP 
with vPI, for any P’ # P. However, this time the surface terms do not cancel, and one 
finds 

(3.44) 

Equation (3.42) is incorrect because 27rA, is an angle. There is a surface correction 
which is half the right-hand side of (3.44). In the extended scheme, it is true that 

but to say that Qyg - tiX is conserved is a triviality because A”, is defined in terms 
of Q;eg. 

Our conclusion is that neither Qyg not Q{ is conserved. Actually, we already knew 
that Q; was not conserved because the stationary states of the harmonic oscillator 
involve all values of P, so that they are not eigenstates of Q;. 

4. BOSONIZATION 

A complete treatment of the Schwinger model requires a consideration of excited 
states of the fermions, and then one must work with the entire Hamiltonian (3.14). 
We shall show that this Hamiltonian can be remarkably simplified by the technique 
of bosonization. We shall also show how, in principle, one may obtain the exact 
stationary states of the model. The material of this section is not essentially new, but 
there are some technical differences (improvements) between our presentation and 
that of the literature. 

Because space is a circle of length 2n, and therefore momenta are integers, we shall 
employ the boson operators used most frequently to solve one-dimensional condensed 
matter problems. These operators are basic in Mattis and Lieb’s solution [lo] of the 
Luttinger model, work that has been fully reviewed by T. Bohr [ 111. For a more field 
theoretical approach to bosonization, see Refs. [3]. 

The bosonic operators are the momentum space, chiral charge density operators 
defined earlier 

P,(P) = c Q:,k+p& a= 1,2, PE 2, 
k 
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which have the hermiticity property 

P&P) = PA-PI* (4.2) 

We shall only need these operators for p # 0. 
Let us now recall the crucial fact that a physical state is a linear combination of 

physical fermion basis states in which all but a finite number of negative energy 
levels are filled and all but a finite number of positive energy levels are empty. Acting 
on such states, the operators p, have the commutation relations 

b,(-P),P,(P’)l = P4@ 1, (4.3a) 

M-P)9 P*(P’)l = -Pdpp, 17 (4.3b) 

k-P>, P*(P’)l = 0. (4.3c) 

These are demonstrated in Appendix A. It follows from the arguments given there 
that for p # 0, p,(p) is a finite operator, unlike the charges QL =p,(O) and 
QR =p2(0), which had to be regularized. 

Let us next define, for p # 0, 

Q(p) = - -L \/zip @I(P) + &(P))l 

WP) = - 1 @I(P) -PAP))* 
\/z 

(45) 

These operators satisfy the canonical Bose commutation relations and hermiticity 
properties (3.35). Clearly 

Now we are ready 
Hamiltonian (3.14). 
immediately 

j”(P) =&G(p) = dQwP)7 (4.6a) 

Y(P) =A(p) = \/zn<P). (4.6b) 

to give the bosonized form of the operators which occur in the 
On substituting for j”(p), the Coulomb term becomes 

(4.7) 

The fermion kinetic energy has two contributions. One is the energy of the unexcited 
Fermi-Dirac sea. This depends on zX and is what we computed in the last section. 
The other contribution is the excitation energy. The operator measuring this has the 
bosonized form 

+ ?? (II+(p) 17(p) + p’@+(p) G(p)) + infinite constant. 
SO 

(4.8) 
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Verifying this claim requires a number of steps. First, observe that in terms of the 
operators p,, (4.8) becomes 

l v 
z- 

1 x- P,(P)P1(-P> +-y- I p,(-p) p,(p) + infinite constant. (4.9) 
PZO P+o 

Using the commutation relations (4.3), this can be rewritten as K, + K,, where 

K, = 1 P~(P>P,(-P), 
P>O 

(4.lOa) 

KR = x PA-P>P,(P). 
P>O 

(4. lob) 

The infinite constant has been arranged to cancel here. The ordering of the operators 
in K, and K, is desirable, because for p % 0 both pl(-p) and p*(p) annihilate 
physical basis states. 

Let us consider next the action of K, on a physical basis state. Only the momenta 
of the left-handed particles matter here. The operator pI(p lowers one 
particle’s momentum by p, then raises another’s by p. Suppose there are two distinct 
pairs of momenta r + t, r and s + t, s, with r > s and t > 0, such that there are 
particles with momenta I + t and s present, and no particles with momenta r and 
s + t. Then the term in K, (with p = t) 

~l,s+tal,s4,r~l.,+I t (4.11) 

exchanges the filled and empty levels, but so also does the term (with p = r - s) 

a:,,al,saf.s+lal,,+t. (4.12) 

The sum of (4.11) and (4.12) vanishes, because of the anti-commutation relations 
(3.12). A similar argument applies if r < s. So after all, K, does not change the 
momenta of any particles. Its only nontrivial action is through terms of the form 

t 
al.r+Pal,ral,r 1,rtp, + a P > 0, (4.13) 

which acts as a unit operator when there is a particle of momentum r +p present, but 
no particle of momentum r. Otherwise this operator annihilates the state. 

We conclude that on any physical basis state, K, acts as a constant N, times the 
unit operator, where N, is the number of pairs of energy levels in which the upper 
level is occupied and the lower is empty. In fact, N, is the excitation energy. For 
example, the excited basis state whose level occupation is shown in Fig. la has an 
excitation energy of 10 units, and N, is also 10. To see that the excitation energy 
always equals N,, consider raising any particle by one energy unit. This creates 
immediately one extra pair of levels where the upper is occupied and the lower is 
empty, but apart from this one the number of such pairs is unchanged. Existing pairs 
involving the previously filled (empty) level are replaced by pairs involving the newly 
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filled (empty) level. Any state can be obtained by exciting particles by one energy 
step at a time, and for each step N, increases by one. Since in the unexcited state N, 
is zero, it follows that N, is the excitation energy. 

This completes our argument that K, measures the excitation energy of the left- 
handed particles. K, similarly measures the excitation energy of the right-handed 
particles. (The reverse order of the operators reflects the fact that for right-handed 
particles, increasing momentum implies decreasing energy.) 

Putting it all together, we find that the bosonized form of the Hamiltonian (3.14) is 

+ infinite constant. 

If we now make the identification of the zero momentum field operators given by 
(3.36), then (apart from an irrelevant constant) we obtain the canonical Hamiltonian 
of a free massive scalar field (3.34). 

It is now clear why we should identify n(O) with \/z(zX + $). The definition (4.5) 
of 17(p) extends to p = 0, becoming 

and the regularized axial charge Qyg is precisely uX + 1. 
The definition of Q(O) also makes sense. Note that for p # 0 

@P(P) = - 

where EFng(p) is the Fourier transform of the longitudinal part of the electric field 
-axA,. This follows from Gauss’ law (3.3). On the other hand, the definition (3.36) 
of @(O) is equivalent to 

@J(O)= - l -E:‘(O), 
&e2 

(4.16b) 

where E:(O) = 27zE: ( i.e., the zero momentum Fourier transform of the constant 
transverse electric field). 

Now, let us consider again the currentsj’ andj ‘t. The Heisenberg equations for the 
free scalar field are 

-$ Q(P) = WP), (4.17) 

and 

-$(P) = C-P2 -m*> @VP)* (4.18) 
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Expressing Q(p) and n(p) in terms of current components, using (4.6), Eq. (4.17) 
becomes 

$ j”(p) - W’(P) = 0, (4.19) 

which is equivalent to the conservation law a,j” = 0. On the other hand, using (4.16) 
as well, Eq. (4.18) becomes 

&y(p) - &g(p) = +y’(p). (4.20) 

Taking the expectation value of the p = 0 term here reproduces the axial charge 
anomaly, Eq. (3.39). But now we have more, because the Fourier transform of (4.20) 
is the complete anomaly equation 

Finally, let us re-examine the unexcited states that we constructed in the last 
section, Their energies are correct, because the zero momentum part of the bosonized 
Hamiltonian is decoupled from the nonzero momentum part. However, they are not 
true stationary states of the full Hamiltonian. Since they have no fermion excitations, 
they are annihilated by p,(-p) and p*(p) for all p > 0. Equivalently, because of (4.4) 
and (4.5) they are annihilated by the operator 

ff(P) - i I PI Q(P), P# 0, (4.22) 

which is proportional to the annihilation operator for a zero muss scalar field. A true 
stationary state with only zero momentum scalar particles is annihilated by 

WP) - i dPV@(P), p # 0. (4.23) 

Transforming from one type of state to the other requires a Bogoliubov transfor- 
mation. 

5. AXIAL ELECTRODYNAMICS AND RELATED MODELS 

Here we show that certain models similar to the Schwinger model, of which chiral 
electrodynamics is an example, do not exist as well-defined quantum field theories. 
But axial electrodynamics is well defined. For an alternative derivation of these 
results, see Refs. [ 121. We continue to suppose that space is a circle. 

The Schwinger model has two independent massless Fermi fields, one left-handed 
and the other right-handed, both of charge 1. It is straightforward to write down a 
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model with nL left-handed and nR right-handed Fermi fields, having integer charges 
{yr): 1 <r<nL;y as): 1 < s < n,}. The Lagrangian density is 

L = $ @,A, - axA,)’ + c qil”iyya, + ZjyA,) I&’ 
r 

+ c qk”‘ipya, + ij@4,) l//k”‘. (5.1) 

I&” (I&‘) is a 2-component spinor, in which the lower (upper) component vanishes 
identically. 

A special case of (5.1) is axial electrodynamics, where nL = nR = 1 and y?’ = 1, 
yg’ = -1. Another is chiral electrodynamics, which has just a single left-handed field 
of charge 1. 

Formally, one can derive a Hamiltonian just as for the Schwinger model, working 
again in the gauge where aXA, = 0 and 0 <A, < 1. However, there is a problem. To 
satisfy Gauss’ law, the total electric charge must be zero. Now we know that the 
regularized charges of any fermionic state with prescribed occupation of the levels 
varies with A,, so as to be gloally gauge invariant. The generalized form of the 
charges (3.20) is 

Q yeg = p/f(‘) + ylJ’A, + 4) Yl”, (5.2a) 

Q peg = (-p _ ya”)/l, + +)g’. (5.2b) 

For the total electric charge to be zero, independently of A,, we must have 

(5.3) 

2 (yf’)’ = c (yf’)‘. (5.4) 
r s 

While the first equation is easy to satisfy by an appropriate choice for the integers 
M(‘) and No), the second is a constraint on the charges of the particles in the model. 
The Schwinger model satisfies the constraint, and so does axial electrodynamics, but 
chiral electrodynamics does not. 

The inconsistency of models which do not satisfy (5.4) was understood before in a 
more general, but less direct way, as a consequence of the gauge potential being 
coupled to an anomalous electric current [ 121. Let A,(t) be a background, x- 
independent gauge potential, so E, =A’, is the background electric field. Then 
directly from (5.2) 

; <Q> =E, (x (Al”)* - x Oks’)‘) , 
r s 

(5.5) 
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where Q is the total electric charge. Equation (5.5) is true not only when the 
fermionic state changes adiabatically, that is, with unchanging occupation of the 
energy levels, but also if particles are excited, since such excitations do not change 
the total charge. Clearly, if (5.4) is not satisfied, then the total charge is not 
conserved. So when there is a problem with Gauss’ law, then the electric current is 
anomalous. Our argument that (5.4) must be satisfied in a sensible model is therefore 
consistent with the earlier results. 

If Eqs. (5.3) and (5.4) are satisfied, then there is no momentum anomaly; unexcited 
states which are connected by the spectral flow and by gauge transformations have 
the same momentum. Moreover, in axial electrodynamics, the total momentum of an 
unexcited state is zero, as in the Schwinger model. The accounting is a little different 
in the two cases, though. In fact, an analysis of axial electrodynamics along the lines 
given here shows that it is dynamically equivalent to the Schwinger model, but the 
roles of the axial and vector currents are reversed. In axial electrodynamics, it is the 
vector current jr, and therefore also the fermion number, that is not conserved. 

6. THE IRRELEVANT @-PARAMETER IN THE SCHWINGER MODEL [ 131 

In pure electrodynamics on a circle, recall that the Hamiltonian is 

H=$E: (6-l) 

and the wavefunction t&4,) must be periodic, with period 1. But there is not a unique 
canonical quantization, because of the arbitrary real parameter 0 in the represen- 
tation (2.8) of the electric field operator E,. For a general value of 0, the 
Hamiltonian (6.1) has eigenvalues {Ire’@ + 8/2a)*: n E Z}, so the fractional part of 
0/27r is physically significant. The integer part can be removed by a gauge transfor- 
mation. 

8 can be entirely removed from the Hamiltonian at the expense of changing the 
boundary conditions. Let 

ty’(A,) = eieAy(Ax). (6.2) 

This would be a gauge transformation if 0/2x were an integer. The Schriidinger 
equation for v’ is 

. aw’ e2 a2yl’ 
‘at=-K 8A: (6.3) 

and w’ obeys the boundary condition 

v’( 1) = e’e@(0), 

so 8 does not disappear, unless @/2x is an integer. 

(6.4) 

595/159/l-16 
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In the Schwinger model, 8 is no longer a relevant parameter. To see this, it is 
sufficient to consider again unexcited states, since excitations are insensitive to the 
transverse electric field. When 0 is nonzero, the Schrtidinger equation (3.25) is 
replaced by 

i+= (-g (-&+q + q?(‘4,)) wp (6.5) 

but the boundary conditions (3.24) are unchanged. Let now 

I&(A,) = et6(P+A+p(Ax). (6.6) 

As above, changing to the primed wavefunctions removes 8 from the Hamiltonian. In 
addition, because of the extra factor of exp iP@, the primed wavefunctions obey the 
original boundary conditions 

w;(l) = w;, I(O). (6.7) 

So a change of variables removes 8. Since P + A, = $(Qyp - l), Eq. (6.6) is formally 
a chiral transformation, and one sees the intimate connection between the irrelevance 
of the e-parameter and the existence of the axial anomaly. Both follow from the 
boundary conditions (3.24) or, more fundamentally, from the spectral flow. 

7. DISCUSSION 

When space is a circle, what we have discovered is an essential topological 
difference between pure electrodynamics and the Schwinger model. In pure elec- 
trodynamics, the configuration space is itself a circle, since the gauge field is 
specified, up to gauge equivalence, by the phase factor (2.1), and the wavefunction 
must be single-valued on this circle. In the Schwinger model, on the other hand, the 
circle of Dirac operators associated with this configuration space has a nonzero 
spectral flow. The immediate consequence is that the total wavefunction of a quantum 
state is no longer strictly periodic, but periodic “with a twist,” as one orbits the 
configuration space. [For unexcited states the relevant boundary conditions are 
Eqs. (3.24).] This means that the configuration space is effectively replaced by its 
covering space-the line- when fermions are present. States of the Schwinger model 
are best described in an extended scheme, using the linear variable A”,, rather than the 
angular variable A,. It is this change of topology that is responsible for the axial 
anomaly, and for the irrelevance of the Q-parameter. 

A particularly interesting dynamical property of the Schwinger model on a circle, 
of which only a vestige remains in the usual version of the model, is that the semi- 
classical vacuum, the gauge field that minimizes the regularized energy of the 
Fermi-Dirac negative energy sea, occurs when the phase factor (2.1) equals -1. It is 
unlikely one could have discovered this using perturbative methods. 
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Let us conclude by reviewing some well-known aspects of quantum chromo- 
dynamics (QCD) with massless quarks in three spatial dimensions, in the light of our 
Schwinger model results [ 141. In QCD there are an infinity of physical degrees of 
freedom in the pure Yang-Mills field, and one of these is the phase factor 

X=exp-+-I.+ ( Tr F,A, - $A,AjA, d3x. 

The integrand here is the Chern-Simons 3-form [ 151. X plays a similar role to the 
phase factor (2.1) in the Schwinger model. This is not surprising, since A,, the 
integrand there, is the abelian Chern-Simons l-form. X is gauge invariant, because 
under a gauge transformation of topological winding number n, the phase of X 
changes by 27~. Topologically trivial gauge transformations do not change the 
integral of the Chern-Simons form at all. A closed loop in the Yang-Mills 
configuration space is noncontractible if (and only if) the phase of X changes 
(continuously) by 2nn along it, where n # 0. 

An instanton is a gauge field which traverses, with Euclidean time as the 
parameter, such a noncontractible loop. This follows from the defining property of an 
instanton 

1 
- - 

16~ I eLIVoZ Tr(F,,F,,) d3x dt = 27~2, n # 0, (7.2) 

and from the identity 

f j  &i/k Tr (F&k - +A,A,Ak) d3X = +j syvor Tr(F,,, F,,,) d3x, (7.3) 

which is true provided the field tensor F decays sufficiently rapidly at spatial infinity, 
and one chooses a gauge where A, = 0 there too. 

In massless QCD, as in the Schwinger model, it is known that the gauge covariant 
three-dimensional Dirac operator has a nonvanishing spectral flow along noncontrac- 
tible loops [5], so again the presence of fermions changes the topology, and one must 
pass to the simply connected covering of the Yang-Mills configuration space. As in 
the Schwinger model, this change of topology implies that the O-parameter of 
massless QCD has no physical effect [ 141, and that there is an axial anomaly. This 
time the anomaly equation is [ 161 

Nf a,j:=--s Ien2 ,i"D'C Tr(FL‘"F,,), 

where j: is the color singlet axial current, and N, is the number of quark flavors. 
It would be very interesting to know the semi-classical vacuum of massless QCD, 

that is, the background static gauge potential for which the sum of the classical 
potential energy (the color magnetic field energy) and the regularized energy of the 
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Fermi-Dirac sea in that background field is minimized. Fluctuations of the gauge 
potential around this vacuum, and fermionic excitations, could perhaps be treated 
perturbatively. The observed properties of quarks-their masses in particular-might 
be a dynamical consequence of this vacuum being nontrivial. 

There are a number of reasons why the three-dimensional theory is harder to study 
than the Schwinger model. As already mentioned, the Yang-Mills configuration space 
is much more complicated, and little is known about the spectrum of the gauge 
covariant Dirac operator which occurs in the Hamiltonian. Moreover, the eigenstates 
of the Dirac operator depend on the background gauge field, whereas in the 
Schwinger model (in the Coulomb gauge) only the eigenvalues did. It is not clear 
whether it is feasible to work with a fermionic Fock space constructed from such 
energy eigenstates, which vary with the background gauge field, rather than the usual 
Fock space constructed from unvarying plane wave states. Another problem in three 
dimensions is that the fermionic excitations cannot be handled by the bosonization 
technique described earlier. 

Despite these difficulties, we hope that the ideas and results presented here can be 
used to gain a better understanding of QCD. 

APPENDIX A: A BOSONIZATION LEMMA 

Here we establish the commutation relations (4.3). Let p, p’ be fixed nonzero 
momenta. Suppose also a physical basis state 1~) is given. We shall show that 

b,(-P),PI(P’)l Ip> = P&l, Ico>v (A.11 

where 

PI(P) = E a?,k+p%k 
k=-a, 

64.2) 

We drop the subscript 1 in the following. 
The idea is that for Ik( sufficiently large, at k+puk annihilates lp), because left- 

handed particles of momenta k and k + p are either both present (k < 0) or both 
absent (k % 0). One can therefore restrict the range of summation in p and compute 

[ 
,i, akt-puk, ,i, ‘t,~~~,] t q>, (A.31 

where K and L are both large. It is convenient technically to have K > L + I p’ I + I p I. 
Now, using the anti-commutation relations (3.12), the expression above reduces to 
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Summing over k, this becomes 

( 
L L 

v aIt,,l-,aI- E a,t,p4+p 
,=iiL 

Irph 
I= -L 1 

which equals 

243 

(A-5) 

(A-6) 

Only the terms in these sums near fL do not cancel. Particles of all momenta near 
-L are present, but there are none with momenta near L. Therefore, if p’ #p then 
(A.6) vanishes, and if p’ =p then (A-6) equals p 1~). This establishes (A.l). Note 
that (A.5) is ambiguous if L is infinite, and this is why one must be careful to specify 
the type of states on which p(p) acts. 

Equation (4.3a) follows because any physical state is a linear combination of basis 
states for which (A.l) is true. Equation (4.3b) is established similarly. The opposite 
sign occurs there because the right-handed Fermi-Dirac sea has particles of large 
positive momenta. Equation (4.3~) is true, because the analog of (A.4) vanishes. 

APPENDIX B: AN ANOMALY IN A QUANTUM 
MECHANICAL SYSTEM 

Consider a particle of unit mass and unit charge moving on a 2-torus of unit 
dimensions, and coupled to an abelian gauge field. The following gauge invariant 
data specifies the field: (1) the field strength, which acts as a magnetic field normal 
to the torus and whose total flux must be an integer multiple of 2x--the same flux as 
is emitted by an elementary Dirac monopole; (2) the holonomy (Wilson loop 
variable) on any two closed curves which are topologically equivalent to the two 
orthogonal circles which generate the torus-these curves are not the boundaries of 
any region of the torus. The holonomy on any other closed curve is determined using 
this data and Stokes’ theorem. 

Let us introduce coordinates {(x, y): -6 <x < 1 + 6, 0 < y Q I} on the torus. 
Identifying y = 1 with y = 0 gives a cylinder, and then identifying x with 1 +x 
(-6 <x < 6) joins the ends of the cylinder, with an overlap, and gives the torus. 

We select a gauge field with uniform magnetic field B = 27r, and holonomy equal 
to one on the two circles x = 0 and y = 0. Because the total flux is not zero, this is a 
gauge field on a nontrivial U(1) bundle over the torus. To specify the bundle [ 171, we 
define the gauge transformation g(x, y) = exp - 27riy to act as a U(1) transition 
function between the overlapping cylinder ends. One choice of gauge potential for the 
field of interest is then 

a,=O, ay = 27~~. P.1) 

595/159/l-17 
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The gauge potentials on the overlapping regions are correctly related by the gauge 
transformation g, since 

a,(1 + x3 Y> = a,(-% Y) + i(@, g) g- ‘>(x, y). Q3.2) 

We shall suppose from now on that 6 is infinitesimally small and effectively zero, 
and that g is effectively defined on the circle x = 0. This will cause no problems. 

The holonomy on circles in the y-direction is 

I 
I 

W,(x) = exp i uY dy 
0 

= exp 2nLx, 
(B.3) 

and in the x-direction, 

W,(v) = 

= exp - 2riy. 
(B.4) 

So W,,(O) and W,(O) are both equal to one, as desired. The need for the extra factor 
g(y) is explained in Ref. [ 171. The difference in the phases of W,,(x,) and WJx,) is 
the flux through the cylinder bounded by the circles x = x, and x = x2, and W,,(x) is 
single-valued, because the total flux is quantized. 

Let us now look for the stationary states of this system, by solving the Schrodinger 
equation 

aw ia,=Hyl 

with Hamiltonian 

H=-+$-+($+lnix)*. 

P.5) 

034 

Since a gauge transformation is needed to connect x = 0 with x = 1 the wavefunction 
is not single-valued in x, although it is in y. It must satisfy the boundary conditions 

y/U, Y, f) = e-2niyv(0, Y, t), (B. 7a) 

a,~(l, y, t) = e-2RiYf3xv(0, y, t). (B.7b) 

The Schrodinger equation separates if we write 

y(x, y, t) = ,f y,(x, t) e2niny. 
n=--00 

G-w 
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The functions w,, satisfy the equations 

. awn 1 a2w 
l-=--z- ax2 at 2 + 2n2(n + x)’ yn, 

Y,+ I@ t> = Wn(L 09 

axWn+ *(Ov t> = adYnv9 9 

(B. 10a) 

(B. lob) 

These equations are equivalent to (3.24), (3.25), and (3.29) above, and can be solved 
in the same way. All stationary states are obtained by taking a stationary state u of 
the harmonic oscillator of frequency 2n, satisfying the equation 

- + 2 + 27c2x2u = Eu, --ao<x<co, (B.ll) 

and setting v,(x, t) = e-%(n + x). The energy spectrum of the particle on the torus 
is therefore {27r(m + 4): m > 0). The ground state wavefunction is 

VI(X,y,t)=~e-nil fJ e-n(ntx)2+2dny 

n=--00 

= Ne-n"2-inr@(-x + iy; l), (B.12) 

where 0 is the third Jacobi theta function, and N is a normalization constant. 
A comparison with the Landau levels of the same particle moving in the same 

magnetic field, but in a plane, is interesting [ 181. There the energy levels are also 
those of a harmonic oscillator of frequency 2n but each level has a large multiplicity. 
If the particle is restricted to a large rectangle of area A then the multiplicity is 
estimated to be A. We see that when A = 1 and boundary conditions appropriate to a 
torus are imposed, then the multiplicity is exactly 1. In their study of the QCD 
vacuum, the Copenhagen group have made important use of quantum mechanical 
eigenstates for particles in background magnetic fields and have also been led to the 
wavefunction (B. 12) (See, e.g., Refs. [ 19, 201.) R e erence [20] in particular contains f 
some useful information on the theta function. The Landau levels for a particle 
moving on a compact 2-manifold, for example, on a sphere or a torus, are also 
important in studies of the quantized Hall effect [21]. 

Less important than the solution of our model is the subtle separation of variables 
(B.8) that makes it possible, so let us review that. Because the momentum operator 
p,, = -ia/ay commutes with the Hamiltonian, it is natural to expand w  in eigenstates 
ezniny of this operator. But the eigenstates of H are not eigenstates of py because of 
the boundary conditions (B.lO). The underlying reason for these boundary conditions 
is a spectral permutation. The second term in the Hamiltonian 

(B.13) 
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is an operator in which x appears as a parameter, and whose spectrum is 
{2rr2(n + x)‘: n E Z}. If we follow one eigenvalue continuously from x = 0 to x = 1, 
it does not return to its original value. The spectrum is permuted by the operation of 
circling the torus in the x-direction. Consequently, the eigenfunction with eigenvalue 
2&z’ at x = 1, namely, exp 2ni(n - 1) y, should be identified with the eigenfunction 
with the same eigenvalue at x = 0, namely, exp 2lriny, and this is precisely the iden- 
tification made by the gauge transformation g(v). The boundary conditions represent 
the identification of the coefficients of these eigenfunctions. 

A closely related consequence of the spectral permutation is that py is not 
conserved, even though it commutes with the Hamiltonian. Consider the partially 
integrated expectation value 

(P,>X =I,’ dYw* (-i ;) w 

The evolution of vn given by (B.9) implies that 

(B. 14) 

(B. 15) 

and we deduce that the quantity of interest, the rate of change of the expectation 
value (p,), is a difference of surface terms 

Because of the boundary conditions (B.lO) these surface terms do not cancel 
completely. We find 

-$p,)=br~ (g * av” 
n Wn--Wn ax )I x=o’ 

(B.17) 

The expression on the right-hand side has the same value if evaluated at x = 1, and 
has the physical meaning of being 27r times the probability flux across the circle 
x = 0. Also, because of surface terms, Ehrenfest’s theorem has the anomalous form 

(B.18) 

The anomaly here occurs simply because x is the coordinate on a circle, so there is a 
contribution to d(x)/dt equal to the product of the probability flux at x = 0 and the 
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discontinuity of the coordinate there, which is unity. Combining (B. 17) and (B. 18) 
gives the simple result 

$ (p, + 27l.x) = P71Px). 

This is the quantum mechanical version of 

du,- 2x$) 
dt- I’ 

(B.20) 

one of the classical equations of motion for a particle in a magnetic field of strength 
2n. 

The gauge invariant operator p,, + 27rx is the analog of Qyg in the Schwinger 
model and Eq. (B.19) is the analog of the anomaly equation (3.39). py is the analog 
of Q;; it appears naively to be conserved, but is not because of surface terms. The 
more fundamental reason why py is not conserved is because rotations in the y- 
direction are not quite symmetries. Clearly the torus itself, the magnetic field, and 
even the gauge potential (B. l), are invariant under y --t y - a (mod 1). But W,(y), the 
holonomy on a circle in the x-direction, is not; it is multiplied by exp 2rda. In the 
gauge that we are using, the mechanism for this is that the gauge transformation g(y) 
changes from exp - 2niy to exp - 2ni(y - a). 

There is another interesting gauge in which to describe the rotated gauge field. 
Namely, retain the gauge transformation g(v) = exp - 2x& but change the gauge 
potential to 

a, = 27ra, ay = 27~~. (B.2 1) 

The constant potential a, doesn’t change the magnetic field, but the holonomy is now 
W,(y) = exp - 27ci(y - a). For a particle moving in one dimension a physical 
Bohm-Aharonov effect is produced by a potential like a, that changes the holonomy 
but not the electromagnetic field. For example, on a unit circle, the spectrum of the 
Hamiltonian 

-+ (z+ Inia)* 

depends on a [22]. In our two-dimensional model, on the other hand, a can be 
eliminated by a rotation, so it is an irrelevant parameter, just like the O-parameter of 
the Schwinger model. 

APPENDIX C: THE FRACTIONALFERMIONNUMBERS 
OF SCALAR SOLITONS 

In the main part of this paper we have computed fermionic charges in a 
background gauge potential in one dimension, cf. Eqs. (5.2). These results may be 
used to rederive the fractional fermion numbers of one-dimensional scalar solitons. 
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The Goldstone-Wilczek Hamiltonian [7], expressed in a chiral basis, is 

Qi is a background complex scalar field, which has the property (@(-co)] = 
/@(co)) = m, @(co) = eeie@(---co). Earlier, Jackiw and Rebbi [7] considered the 
special case where @ is real and @(-co) = -m, @(a) = m. 

Formally, the fermion number of the soliton is the number of negative energy levels 
of the Hamiltonian H, since these are each filled by one fermion in the ground state. 
A regularized fermion number may be defined as follows. Suppose that space is a 
long interval [-L, L], and that 

O(L) = e-“@(-L). (C.2) 

Then impose suitable boundary conditions on the Fermi field, to make the spectrum 
discrete, and use heat kernel regularization to control the ultraviolet divergence. With 
this prescription, which was used previously by Roy and Singh [23], the fermion 
number F is 

F= lim 
A-O+ (C.3) 

where {E,} is the spectrum of H. F is independent of L for sufficiently large L, and 
its fractional part does not depend on L at all. 

It makes no difference to the spectrum if we rewrite the Hamiltonian (C.l) in the 
gauge invariant form 

H= * I [w!(-@, +A,) WI + wf@,+4 wz - wztw,@- ~fvz@*l dx (C.4) --oD 

and set A, = 0. This is the Hamiltonian of axial electrodynamics, with an additional 
Yukawa coupling to a scalar field of charge -2. Gauge invariance now suggests the 
boundary conditions 

wI(L) = e”‘2”e~,(-L), (C5a) 

l&(L) = e-“‘Z”5J/2(-L) (C.5b) 

together with (C.2). All gauge invariant quantities, for example, viw, @, are equal at 
-L and +L. One may therefore identify these points, obtaining a circle of length 2L. 
In particular, the equality of vf~, - vfv2 at -L and +L ensures that the 
Hamiltonian is self-adjoin& so the boundary conditions (C.5) are in the class 
considered by Roy and Singh. (Note that these boundary conditions will lead to a 
unique value for the fermion number, whereas the value found by Roy and Singh was 
ambiguous, because they only required self-adjointness of the Hamiltonian, which is 
not a restrictive enough condition.) 
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Next, we are free to perform the gauge transformation 

vve ia 
Y19 v2-‘e 

-ia 
v2 

da (C.6) 
@--t e-X.7(x)~, A,-+A,-- 

dx 

where a(x) =-0(x +L)/4L. Such a transformation does not change the fermion 
spectrum, nor the fermion number of any state. In the new gauge, A, = 0/4L; also, 
the Fermi and scalar fields are equal at fL, and therefore continuous on the circle. It 
is now possible to continuously reduce the scalar field to zero everywhere. The 
fermion spectrum changes in the process, but the fractional part of the fermion 
number does not-it is a topological invariant. The reason is that this fractional part 
depends only on the nature of the spectrum at very large negative energy. (If we 
define FE by restricting the sum in (C.3) to energies E, < E, with E < 0, then F-FE 
is an integer.) Reducing the scalar field to zero produces an O(E;‘) change in an 
energy eigenvalue E, < 0, as can easily be verified in the WKB approximation, and 
this change is sufficiently small that the fractional fermion number is unaltered [24]. 

When @ vanishes, the Hamiltonian is simply that of axial electrodynamics. The 
fermion number F is the difference Qpg - Qcg. From equations analogous to (5.2), 
appropriate for a circle of length 2L rather than 27c, one linds 

where M and N are the integers specifying the location of the Fermi surfaces. In the 
lowest energy state, where all negative energy levels are filled and all positive energy 
levels are empty, M = -1 and N = 1 if 0 < A, < n/L. Since A, = 0/4L, the fermion 
number is 

0 
F=-l+%. 

From this we conclude that the fractional part of the fermion number of the original 
soliton is O/271, which agrees with Goldstone and Wilczek’s result. When 0 = rr, 
corresponding to a real scalar soliton, the fractional fermion number is f, which is 
Jackiw and Rebbi’s result. 

To see that the boundary conditions (C.5) are reasonable, consider the case where 
Q(x) = tanh x. There is precisely one eigenstate of the Dirac Hamiltonian whose 
energy AE approaches zero as L + co; in the limit it becomes the Jackiw-Rebbi zero 
mode. A good approximation to this eigenstate is 

(C.9) 
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By imposing the boundary conditions on v/, the energy is determined to be 

AE FZ 4e-2L. (C.10) 

(Both (C.9) and (C.10) are correct to leading order in e-“.) There is no low-energy 
mode hidden at infinity, because with the circular geometry, and in the right gauge, 
the scalar field is effectively constant there. 

Roy and Singh pointed out that when @ is real, and the boundary conditions on 
the Fermi field are fixed, then no fermion energies pass through zero as the scalar 
field is changed. We deduce from (CA), therefore, that the Jackiw-Rebbi soliton has 
absolute fermion number -4. This is as expected, since the energy AE is positive and 
the corresponding level is unoccupied. In the limit L + co, the zero mode is unoc- 
cupied. 

To recover the Jackiw-Rebbi soliton with the zero mode occupied we must modify 
the boundary conditions. Provided the complex scalar field is never zero, the phase 0 
is absolutely well defined, not just mod 27r, and the boundary conditions are unam- 
biguous. However, for a real soliton, the scalar field must vanish somewhere, and it is 
then consistent to set 0 = -rr in (CS), rather than 0 = 7c as before. Now the absolute 
fermion number can be shown to be f. But also AE = -4e-2L, so the zero mode 
would be occupied in the limit L + CD. 

To summarize, we have shown that the fractional fermion number of scalar 
solitons and the anomaly in the fermion number in axial electrodynamics are related. 
They have their origin in topologically equivalent fermionic spectra. For another view 
of this relationship, see Ref. [25]. 
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